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Abstract. 
1 

The a-methyl and &protons in H-N?&? spectra, the a-methyl, 

c-ring, and R-ring carbons in 13C-FIMR spectra of N-substituted 2,4,6- 

trimethylpyridinium salts III are anisochronous, Dynamic NNiR spectro- 

scopy affords appreciably higher activation enthalpies AGP for rotation 

around the N(sp*)-C(sp 3 ) bond than AGt for the analogously substituted 

mesityl derivatives, in agreement with the shorter i-C thdn the C-C bond. 

vYe report the first case of hindered rotation aroun? the N( sp2)-C(sp3) 

bond in N-substituted 2,4,6-trlmethylpyridinium cations (III) obtained by 

reacting 2,4,6-trimethylpyrylium perchlorate (I) ' with a-aminoalcohols (IIAa, 

IIBa, IICa). Phe hydroxy groups of the resulted pyridinium alcohols (IIIa) can 

be easily 
2 

converted into esters (IIIb, IIIc, ILId). 
Me Me 

A 0 
+ ClO, + H2N-CHd-CH20R' ----+ Cl@, 

Me 0 Me Me 

1 11 
R-CHX-CHAHB-OR' 

A, R = Me j B, B = Et j C, R = Yh III 

a, R' = H ; b, R' = COCF3 ; c, i-t’ = MN3 j d, R' = COPh 

i'he room-temperature 'Ii-NKR and l3 C-NM spectra of III evidence chemical 

shift non-equivalence of the relevant nuclei bonded to, or in, the pyridinium 

ring, as indicated in Tables 1 and 2 (in addition to the HA, HB protons which 

are obviously diastereotopic being bonded to an asymmetric carbon atom, and 

which form the AB part of an ABX multiplet in the 
1 

H-NMR spectra), All chemical 

shifts are given in the delta scale (ppm 2. internal T&S). In compounds IIIBa- 

-IlIBd, the methylenic protons of the ethyl group are accidentally equivalent 

in all solvents which were tested. 

Compound IIIBa was prepared both from the racemic and from the optically 

active (+)-aminoalcohol IIBa ; as expected, the 'H-NMH spectra are identical 

in achiral solvents. Assignments in the 'H-NpllR and I3 C-NIR spectra are 

straightforward and agree with earlier dataV2r3 
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Table 1. Melting points and 
1 
H-NW chemical shifts of pyridinium 

perchlorates III (at room remperature unless otherwise stated) 

III Aas Ab AC Ad Ba Ba Bb Bc Bd Cai C@ Cc2 

Msp. (‘C) 117 L-2 log 84 ii !z C 96 2 157 c 156 

Solvent f TFA ACD ACD ?YD AC& TFA ACD ACD TFA TFA TFA 

PPm 1 2.88 2.98 3.05 3.10 2.93 2.82 3.05 3.04 3.09 2,61 2.72 2,70 

R-t%e2 2.93 3.05 3.11 3.19 2.98 2.75 3.11 3.08 3.17 3.04 3.06 3*02 

PPd 7.34 7.68 7.94 - 7.53 - 7.83 7.91 - - - - 

&H7 7.43 7.68 7.94 - 7.58 - 7.83 7.91 - - - - 

8 At -1O'C (see Table 3 for coalescence temperature), 1 Broadened peaks. 

2 Obtained only as solution in TFA by leaving overnight alcohols IIIa in TFA. 

d For racemic IIIBa, m.p. 112O ; for optically active IIIBa, m.p. 98’. E Oily 

product which does not crystallize. f YyD-ACD (l:l), B ffith C6H6 added (ASIS). 

h No values are given when the pyridinium W-protons are obscured by other 

protons from the solvent or by aromatic protons within the molecule. 

Table 2. 13C-NMR chemical shifts of III at 4O*C 

III Aa AC Ad Ba 

Solvent PyD 

ppm 1 21.6 

a-Me2 22.7 

mm > 154.6 

a-C2 15548 

ivm 128,6 

&C-c2 130.3 

TFAD TFAD FYD 

23.3 23.4 21.6 

23P9 24.0 23.2 

157*3 157.5 154.7 

157.9 157.9 156.2 

131.4 131.3 128,7 

133.2 133e2 ?30*5 

Abbreviations for solvents in Tables 1 - 3 : TFA = CF3COOH ; TFAD = 

CF3COOD ; ACD = DJCCOCD3 ; PyD = C5D5N. 

Table 1 shows that R-protons in 111 are often accidentally equivalent 

even when a-methyl protons are not. In CH2C12 in most cases both a-methyl.- and 

R-protons are degenerate, but all these accidental degeneracies of 'H-NMR 

a-methyl or R-ring peaks in CH2C12 can be reselvsd with 0.1 - 0.2 moles of 

Eu(fod)3 per mole of compound III. 

Variable-temperature 'H-NMR spectroscopy evidences coalescence of cor- 

responding peaks as indicated in Table -3. In pyridine-d5, 13 C-NMR spectra 
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present coalescence temperatures for IIIAa and IIIBa of 70~75'C and >llO’C, 

respectively (for IIIAa, the coalescence of a-Me2 carbons occurs at 70°, that 

of k-c2 carbons at 75', and that of a-C2 carbons at an intermediate temperature). 

. 
Table 3. Coalescence temperatures for 'H-NMR cl-methyl peaks, temperature range 

for line shape analysis, and average rotation barriers ( AG 4 ) in this range 

Compound Solvent Coalescence temp.('C) Temp. range (OC) AG* (kcal/mole) 

IIIAa PyD-ACD(l:l) 25 21 - 26 16.9 

IIIAc ACD 41 30 - 40 17.1 

IIIBa PYD 67 50 ". 70 19S3 

These findings indicate that the reason for the anisochronism is hin- 

dered rotation around the N(sp2)-C(sp3) bond. The lowest-energy conformation 

IV, according to literature data, 4-9 has the smallest substituent of the sp3 

carbon, namely the hydrogen atom, in or nearly 

in, the plane of the pyridinium ring ; thus the 

two 1tsides*8 of this ring have different environ- 

ments below the coalescence temperature. 

The energy barrier of the internal rotation was calculated by line 

shap@ an&lySis, 
lo-12 with the necessary corrections, 13914 from the 'H-NMR 

spectra. The 'H-NMR chemical shift difference in the absence of exchange of 

corresponding non-equivalent protons is small (3-5 Hz) ; this contributes to 

the narrow temperature range over which the line shape analysis can be effected 

and does not allow meaningful correlations of AG* versus temperature. 

The activation enthalpies from Table 3 are appreciably higher than all 

data reported so far by Mannschreck et al. for analogous mesityl or 2,6-ai- 

methylphenyl derivatives V, 5,6 and by other authors for related systems 7-9,15, 

16 6 Th;ref;re a third type, III = VII, of system with restricted rotation around 

an sp -sp bond must be added to those already discussed in the literature, 

namely to V and VI. 

R3C$ l5 R3;$) '5 :'s R3C-Yo R3Z--0 

R' R' ii' 
V, H' f Me, We VI, Z = N,P,As,Sb,Bi VII, Y = ; VIII 

The difference in AGf is probably due to the shorter C-n' bond distance 

in VII than in V ; indeed, similarly for VI with Z = 8, AG: = 15.9 kcal/mole 

at coalescence (26'C), higher than for V, AGZ = 12.8 kcal/mole at -35OC, all 

other factors being equal (phenyl-ZHMe, with R' = Me and 2 = C or G). ' The 

generalized formula VIII allows a rationalization of parameters affecting AG' 

for internal rotation : bulk of R and A' groups, electronegativities and 

covalent radii of Z and Y. 
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so fdF, rotation barriers for VII with R' = Me were observed with at 

most one of the R groups being hydrogen ; results for N-isopropyl-2,4,6-tri- 

methylpyridinium and other related cations which show at room temperature in 

TFA broadened a-methyl " ri-NM& peaks will be reported eeparately. 

The practically equal rotation barriers found for the pyridinium alcohol 

IIIAa and its acetate IIIAc, both with R = Me, indicate that remote flexible 

groups (like acetate) do not enhance appreciably the barrier ; however, the 

sensibly higher barrier found for the alcohol IIIBa with k? = Et shows that 

slight S%rUCtWdl variations in the proximity of the N(sp')-C(sp3) bond 

influence detectably the barrier for internal rotation. 
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